
—

~- h ( Jf, #---‘“A ‘--

TECHNICAL MEMORANJIUMS
T&

) ---

NATIONAL ADVISORY COMMITTEE l?Oi2AERONAUTICS /’

w—.

THE NAVII?JR-STOKES STRESS PRINCIPLE FOR VISCOUS FLUIDS

By Ernst Mohr

Luftfahrtforschung’
vol. 18, ITo. 9, September 20, 1941

Verl.ag von R. Olaenbourg, Miinchen und Be’rlin

IL .—

Washington
September 1942

. .. .
//, ;“. -’

f f ---.’

——



Illllllllllllllimllillmlllllll,
31176014404967

—.——.

NATIONAL ADVISORY COMMITTEE
-——

TECHNICAL idEMORA3JDUM

.,

FOR AEROHAUTICS

NO. 1029

—

THE NAVIER-STOKES STRESS PRINCIPLE FOR VISCOUS FLUIDS*

By Ernst Mohr

The Navier-Stokes stress principle is checked in the
light of Maxwellls mechanism of friction and in connection
herewith the possibility of another theorem is indicated.

SUMMARY

The Navier-Stokes stress principle is in general pred-
icated upon the conception of the plastic body. Hence
the process is a purely phenomenological one, which Newton
himself followed with his special theorem for one-diineil-
sional flows. It remained for Maxwell to discover the
physical mechanism by which the shear inflow direction is
developed: According to it, this shear is only llfictitiousl~
as it merely represents the substitute for a certain trans-
port on macroscopic motion quantity, as conditioned by
3rown1s moiecular motion and the diffusion, respectively.
It is clear that this mechanism is not bound to the special
case of the one-dimensioilal flows, but holds for any flow
as expression of the diffusion, by which a fluid differs
sil.arylyfrou a ~lqstic body. If it is remembered, on the
other hand, that the cause of the stresses on the plastic
“oody lies in a certain cohesion of the xiolecules, it a_p-
pears by no means self evident t-nat this difference in the
mechanism of friction between fluid and plastic body should
not prevail in the stress principle as well, although it
certainly is desir~.ble in any ca$e, nt leas% subsequently,
to establish the general theorem in the sense of Maxwell.
Actually, a different theorem is suggested which, iil con-
trast to that by Navier-Stokes, has the form of an unsym-
metrical matrix. Without anticipating a final decision
several reasons are advanced by way of a special flow
w-nic’hseem to affirm this new theorem. To make it clear

*, that the problem involved here still awaits its final
solution, is the real purpose behind the present article.
-——---—- ————__-—-_-_-_-————-———— —.——--—-——
*ilUber den Navier-Stokesschen Spannungsansatz fiir z~he
Fltissigkeitsstromungen. ‘1 Luftfnhrtforschung, vol. 18, ~
no. 9, Sept. 20, 1941, pp. 327-330.
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THE l?HENOMENOLOGICAL THEOREM OF NAVIER-STOK5S

The present analysis deals with so-called laminar
flows of fluids, which also includes gases to the extent
that their density variations are negligible. No limita-
tions are suggested by the restriction of the study to
two-dimensional flows which, however, must always be envis-
aged as being three-dimensional , so that the conventional
three-dimensional identifications can be maintained.

Figure 1 shows in the usual nota,tion the stresses
I?xt P which in vector notation lead to the stress matrix

–Y

whence the easily

affords the related force by volume. Then with K =
as the flow velocity of the fluid, the Navier-Stokes

(1)

(2)

(U,v)
the-

orem states that the stress matrix is proportional to the
matrix of the deformation speeds

(oxTyx
av+

ax

(3)

,
or else

(3a)

where v is a characteristic constant for the fluid,
termed llviscosity.~ On computing the force %y volume

—.
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of (2) by means of the right-hand side of equation (3a),
it is seen that owing to the continuity equation

. . .

au +avo (4)
GaY-

the second matrix in (3a) at the right, contributes
nothing. Equation (3) specially postulates the symmetry
of the stress matrix. As the most important boundary
condition Ilthe adhesion on fixed walls duc to the viscos-
ity~[ is cited.

The same pTinciple (3) is applied to plastic bodies,
with the difference that w is no longer a constant.

To illustrate:

1. i?or the flow indicated in figure 2, termed for
shortqplate flow, the shear inflow direction is according
to (3):

(5)

in which form it had been originally expressed by i?ewton.

2. On the flrigid~ rotational-flow, (fig. 3, w =
speed of rotation) , the matrix of the deformation speeds
dj.sappears identically; hence no shear exists.

MECHANISM OF FRICTION ACCORDING TO itiAXVELL

The Newton or Iiavier-Stokes equation is, as seen,
purely -phenomenological: other than that, such as the
manner in which shear inflow direction of figure 2 comes
into being, it says nothing. And we are indebted to
Maxwell who made the important discovery for the case
that the fluid is a real (ideal) gas, that on the plate
flow the related shear infiow direction is a result of’
the transport on macroscopic momentum, as it arises by
the di-ff,w~.i,on:-=> ‘since”the same number of molecules pass
from below and above through each unit area of the shaded
surface y = y. in figure .2; while the upper ones involve
on the average a greater macroscopic velocity, the slower
layer is subjected per unit time to a certain increment of
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motion quantity, which is proportional to (ua - Ul) , that
is, proportional to the speed increase at that point and
hence according to Newtonls fundamental law (according to
which,the change in motion quantity per unit time corre-
spends to the action of a force) equals the effect of a
shear.

The calculation involved is briefly reproduced.

In this Maxwell conception,the shear (similar to
pressure) refers to the entrained surface element. The
result is the flow (fig. 4), in which the speed increase
is the same as before.

.

With the notation

c amount of the microscopic. molecule velocity

n number of molecules per cubic centimeter

Anc number of molecules per cubic centimeter, with a
speed at interval c . . . . . c + Ac

m mass of a molecule

P gas density; hence m n

the argument is as follows:

qcJ define the transport frOm above, we concentrate
for the first, on the molecules having a speed at inter-
valc . . . . . c + Ac, hereinafter called c molecule,
for short. From these we eliminate those which arrive
at an angle in the interval b . . . . 8 + Ad toward the
Y axis (fig. 5), and call these C,a .molecuies. Such
molecules per cubic centimeter are

(6]

This number, multiplied by the content c Cos d of the
cylinder of surface length c indicated in figure 5, then
gives the number ANC of c,15 molecules striking the
unit surface per second:
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If such a molecule had its last collision at the
(oblique) distance A, it transports at its free yassage
the macroscopic motion quantity

mu=m
{
U. + A Cos d &

t )}?70
(8)

where the value of the pertinent quantities for the dashed
layer, u. = O, is indicated by subscript O. In figure 5,
where such a molecule is plotted, it should be noted that
of C,tl and A only their related projections C:r ~f,
and A? are shown in plan view. All the
together then transport

AI(C

or, using an average value Ac for A

C,ij molecules

(lo)

(9)

Thus the c,++ molecules advancing from above give the
transport .

~c,a”

whence the integration along O from O to ~ gives the
~+transport c from above of all c molecules at

+ Anc f~ -
Tc = —c

1.
; Ac ~)o}—uo+-

2 2

and from below at

(12)

(13)

hence leaving an excess Tc:
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(14)

Integrating with respect to all c molecules and
substituting the average value xc for CAC, the looke&-
for transport or shear T is:

(15)

that is, the Newton formula again (5), and by comparison
with it for the viscosity the explicit expression

~ CAC
—

v= 3P (16)

In this calculation Itiaxweills distribution law for
velocities at rest is used, an assumption which is cer-
tainly permitted so long, as in this case, the macroscopic
velocity u is small relative to the microscopic c
(reference 1). The calculation further indicates that tile
same shear is transported by the hypothetical static unit
surface of the shaded layer y = y. in figure 2. It alSO
is not tied to the condition that the velocity profile as
here has a constant rise: instead of (8) it would then
afford

(17)

the dots denoting negligible terms of lower order.

PROBLEM

In this Maxwellian concept the shear T is therefore
merely I!fictitious,lf since it simply forms the substitute
for a certain transport of momentum, which in turn is
caused by the diffusion, as exemplified in figure 6: dur-
ing time unit O . . . . 1 a certain number of blank mol-
ecules depart and. a corresponding number of white ones
arrive. As a corollary the method of continuum mechanics
is for the present inapplicable because the particle de-
fined according to the continuum no longer’ contains all

,



NACA Technical Memorandum No. 1029 “ 7

earlier molecules In the state t = 11 To make the con-
tinuum mechanics applicable requires first the application
of-the correction due to the transi-tion of molecules and
which exactly results in the fictitious stress. Such an
analysis is obviously impossible for the corresponding
flow condition of a plastic body, since in contrast to gas
it has no diffusion.

Remembering that the conventional foundation of the
Navier-Stokes theorem rests on the concept of plastic body
it seems,in any event, desirab-le to interpret this general
equation similar to itewtonls special case in the sense of
Maxwell. But, on applying the argument associated with
the greatly schematized (fig. 6) to the arbitrary flow
(fig. 7), for stress there is obtained in respect to the
entrained surface element, with a/an as normal differ-
entiation:

ag
v= (18)

hence. the unsymmetrical stress matrix

(19)

which exactly agrees With the first matrix in (3a) at the
right. According to this there is obtairi~d for this ro-
taticn in contrast to the former a sheaz inflow direction

r
T= v {velocity increase -)=yul (20)

~- A
which, similar to the plate flow, every faster layer
exerts on its slower layer below it=

Which of the matrices is preferable - the symmetrical
(3) or the unsymmetrical (19)? Undoubtedly the diffusion
is the controlling characteristic by which a gas differs
from a plastic body and it woulci almost be a miracle if
this difference had no effect in the stress fOrnUla.

The problem is outlined as follows:

—., ------- .. ...—-.. . .-.. ......—-... ...-
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Plastic body Gases

Cohesion of molecules Diffusion rather than cohesion.

Method of continuum mechan- InapplicalIla
ics directly applicable

Cause of stresses in the In’ the case of the plate flow
cohesion of molecules the stresses according to

Maxwell are a result of the
transport sf macroscopic mo-
tion quantity ~.ttending the
diffusion.

1
The stress matrix is pro- ?
portional to the matrix
of the deformation speeds

●

So, if it succeeds in extending llaxwell~s argument to the
rotational flow, the question can be answered.. This is
attempted herewith.

FINDING THZ ANSWER

The procedure is as follOws: instead of co~puting
the excess t~.ansport or Shear T per unit surface in
motion as indicated by the shaded area in figure 8, try
directly for the total shear 2nr T, which this moving
surface undergoes. But since this area constantly changes
into itself by the macroscopic motion, the total shear is
obviously identical with that total shear to ‘which the
enclosed shaded fluid mass of figure 8 is subjected by
the outer fluid; and in this interpretation , however, the
shaded area may be treated as quiescent Irl other words,
the problem simply involves the excess transport through
this quiescent area; if such occurs, it corresponds to a
shearing effect on the shaded fluid mass. l?arther, vis-
ualize identical coordinate systems XSY*Z as indicated
in figure 8 (z axis at right angles to plane of drawing)
plotted along the shaded area in close succession for
each unit surface. If the transport can he computed for
such a surface element fixed in space, the task is finished;
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in the event that the transport is altogether positive,
the unsymmetrical equation (19] should be applicable.. ,

Xor the actual calculation of such a surface el~mcct,
that of the plate flow is reverted to, even to the extent
of usiilg the same notation. Figure 9 shows in plan view
t~e arrival of a C,d molecule from. distance A (the pro-
jected ~l,~t are shown only): the same conveys the mo-
tion quantity mu(P) , where U(P) is the speed in point
P and hence slopes slightly downward. Then the two sub-
sequent facts permit the reduction to the previous case
of plate flow:

1. Put

U(P = U(l?tf)+
{
u(P) - u(P~) 1

J.
(2i)

for u(P) , since the braces on the average cancel for
all molecules from the symmetry with respect to the yz
plane, and it is seen that the calculation can be made
as if only mu(Plf) were transported from the particular
molecule.

2. Since, further,

for the lengthsz ~~ and ~ (the dots denoting ”terrns
of the order ~ , hence are negligible),

U(plf)= U.
()

+ A COS $ -= + ~..
37 0

Then,the calculation is ob~iously the sar,e as befcre,

(23)

while the speed increase
()
& now equals the speed of

rotation w. dy o

It is shown herewith that the shaded fluid mass per
unit area in figure 8 is subjected to the shear T = vw
in flow dixection by the outside fluid. The similarity
of plate flow arid. rotational flow itself is also plaiil;
for both are practically the same in vicinity of the mov-
ing wall, and in both cases this wall continues to perform
work to the extent that the molecules advancing at a
slightly lower macroscopic speed are speeded up again to
full wall speed and then expelled into the fluid; this
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work then appears in a corresponding heat. Lastly, the
equation according the unsymmetrical matrix (19) is no
longer in agreement with the so-called Boltzmann axiom
(reference 2).

FURTHER REMARKS

Having recognized the shear’ T as fictitious~ the
same is suspected for the pressure p, and found to be
a fact. It is proved in two stages: first in quiescent,
then in moving gas.

In the case of quiescent gas the pressure p on a
wall is, as is known, the result of the continual impacts
of the molecules: a molecule flying with speed c at
angle d against the wall transmits to it altogether the
vertical motion qua~tity 2 c Cos 4, and these impacts
produce, according to the kinetic gas tileory, the mean
pressure

T
P=~Pc (24)

~with density and the average value of ~. A
hypothetical cut within the gas then leaves the same
pressure (24) on either side, but in this instance, in
the Maxwellian sense as transport of molecular or micro-
scopic speed. In fact, each molecule emerging at angle TS
with speed c together with the reflective incoming
molecule furnish an increment of perpendicular quantity
of motion of the same amount 2 c Cos 4 as before, hczce
result in the same pressure as on the fixed wall.

If the gas 5s in motion our previous concept of shear
can be supplemented by inclusion of the pressure as follows:
the transport of the molecules is a~complished in first
approximation solely by the microscopic speed; but tr:,.ns-
ported are 1) the microscopic and 2) the macroscopic speed.
The second case then affords the previously know~ shear,
the first, the pressure. Herein is embodied the. expression
for the free displaceability of the molecules which Euler
recognized as representative of the yressure and Itaxwell
of the shear.

Since the new theorem leads to the same motion equa-
tions, hence also to the same pressure field, the pressure
resistance in both instances is the same. This also holds



.NACA Technical IIeaorandurn Iqo. 1029 11

for the frictional resistance so far as the body is at
rest (or ‘in uniform motion, respectively) and the condi-
tion of adhesion is satisfied. It is sufficient to per-
ceive the proposition for a surface element of the body.
Locating the origin of the coordinates including the x
axis in it, the y axis perpendicularly outward, the
adhesion condition gives

hence, because of the continuity equation

a~—= O for y = O
ay

(25)

(26)

wherefrom the proposition follows immediately. Differ-
ences in frictional resistance, thersfore, occurs first
on arbitrarily moving surfaces such, as for iilstance, in
the case of our rotational flow.

Lastly, it is to be observed that, if the new theorem
proves correct, all tra~sitions, of which the two extreme
cases have been considered here, prevail between the ‘plas-
tic body and the fluid.

Translation by J. Vanier,
National Advisory Committee
,for Aeronautics.
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Figure l.- Stress pattern.

Figs. 1,2,3,4
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Figure 2.- Plate flow,
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Figure 4.- Plate flow from a,reference system, in
which the dashed layer is at rest.
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Figs. 5,6,7,8,9

Figure 6.- Exaggerated
diagrammatic

representation of the “
formation of the stresses
in the case of the plate
flow .

Figure 5.- Definition rv
shear as ex~ 1ss

of transport of macroscopic
motion quantity (plate flow).
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Figure 8.- The shear effect
the shaded fluid

in the case of the rigid
rotational flow.

on
mass

Figure

to any

t. 7

7.- AppllCatiOn

of fisnm?e6
selected Flow.

Y
}

P“. Molecule

Acesi’
_——/-

IY

Figure 9.- Shear as excess
of transport of

macroscopic motion quantity
(rigid rotational flow) .



.-

.

/,
I--, L”
I v

.: .-” ‘1
-i ,1

t ,,
i. +),,

,,

i“
I
(.’:
l.-


